Каждый, у кого нет машины, мечтает её купить; и каждый, у кого есть машина, мечтает её продать. И не делает этого только потому, что, продав, останешься без машины. (К-ф 'Берегись автомобиля')
Заключение
Изучение предлагаемой книги позволяет читателю приобрести новые знания, умения и навыки в области научных исследований и конструирования. Эти знания могут быть использованы при изучении других учебных дисциплин, а умения и навыки будут закреплены при выполнении студенческих исследовательских работ, а также курсовых и дипломных проектов.
Учебная дисциплина “Научно-техническое творчество” изучает две первые подсистемы единой системы “наука – техника – производство”. Во введении к книге показано, что все части указанной системы тесно взаимосвязаны друг с другом и опираются на потребность.
На основании изложенного в книге материала можно сделать следующие выводы.
1. Учебная дисциплина “Научно-техническое творчество” опирается на научную базу, которая складывалась годами. В книге неоднократно делаются ссылки на историю развития науки и техники. Исторически сложился язык науки, основные понятия и определения, методология.
Изучив и освоив общие сведения о научно-техническом творчестве, обучающийся сможет мыслить и обсуждать различные вопросы на языке науки.
2. Любое новое знание об объекте техники опирается на старое знание. Для получения нового знания исключительную роль приобретает информация. Потоки информации в современном мире настолько велики, что использовать их в полном объеме становится невозможно.
Для того, чтобы облегчить доступ к информации следует на стадии ее подготовки и поиска применять трудосберегающие технологии. Подобранная и обработанная информация должна использоваться многократно различными специалистами. Для этого информация должна быть систематизирована и представлена в виде структурных матриц, обобщенных графов и фактографических графиков.
Основное требование к информации – меньше текста и больше матриц, графов и графиков.
3. Большинство научных, технических, технологических, экологических и других проблем и задач невозможно решить без проведения измерений. Так как любые результаты измерений являются случайными величинами (из-за невозможности исключения ошибок измерения), то подход к ним должен основываться на методах математической статистики и теории вероятностей. Случайные величины подчиняются законам распределения Гаусса, Пирсона, Стьюдента, Фишера и др.
Для оценки результатов измерения надо иметь представление об ошибках измерения: абсолютной и относительной, случайной и систематической и др. Надо освоить законы накопления ошибок.
Спецификой измерений в химии и химической технологии (и особенно при выполнении лабораторных работ) можно считать малое число, а иногда и отсутствие параллельных (повторных, кратных) измерений, что затрудняет оценку погрешностей, проведение анализа и выбор формы представления конечных результатов измерений.
4. Научное исследование часто выполняется путем проведения эксперимента. Эксперимент ставится на модели (экспериментальной установке) по определенному плану. Часто используют четыре типа планов: для применения корреляционного анализа, дисперсионного анализа, регрессионного анализа и для решения оптимизационных задач. Освоив указанные методики, читатель будет уверенно чувствовать себя при проведении и обсуждении научно-исследовательских работ
5. Результаты прикладных научных исследований используются при разработке технических объектов в качестве новых параметров, новых режимов работы устройства, новых компонентов вещества, новых принципов действия устройства и др.
6. Движущей силой процесса совершенствования технического объекта является обостренное техническое противоречие. Технических объектов без противоречий не бывает. При создании нового технического объекта устраняется обостренное противоречие, но одновременно с этим зарождается другое противоречие, которое пока не обостренное. Со временем это противоречие становится обостренным, тормозит желаемое функционирование объекта и его надо будет устранить.
7. Для разработки новых технических объектов разработаны различные методики. Известные методы технического творчества можно объединить по принципу их схожести в несколько групп: мозговой атаки
, морфологического анализа,
“контрольных вопросов
”, методы эвристических приемов
. Самая сильная группа методов относится к алгоритмам решения изобретательских задач
, например, АРИЗ-85-В, а также к стандартам на решение изобретательских задач, разработанным Г.С. Альтшуллером.
Таким образом, для решения технических задач имеется достаточное количество методов. При этом первые четыре метода активизируют творческий процесс, а последние два помогают генерировать новые идеи. Для успешной работы, особенно молодым специалистам, достаточно освоить 3…5 методов.
8. В процессе разработки нового технического объекта необходимо подготовить несколько вариантов решения задачи, а затем выбрать несколько (до 15) критериев, с помощью которых будет выбрано оптимальное решение.
Работая с книгой самостоятельно, надо последовательно изучать излагаемый материал. Самоконтроль можно провести с помощью контрольных вопросов. Только после того, как пройденный материал будет надежно усвоен, можно переходить к изучению следующего материала. Для запоминания терминов, определений можно пользоваться глоссарием (приложение 4).