Каждый, у кого нет машины, мечтает её купить; и каждый, у кого есть машина, мечтает её продать. И не делает этого только потому, что, продав, останешься без машины. (К-ф 'Берегись автомобиля')
Компьютизированная система визуального контроля судовых энергетических установок
Судовые энергетические установки (ЭУ) и составляющие их технические средства (ТС) на всех этапах эксплуатации характеризуются такими технико-эксплуатационными свойствами и показателями, как мощность, производительность, подача, экономичность, надежность, живучесть и др. Оттого, насколько оперативно, полно и достоверно будут оцениваться и реализовываться эти свойства, зависит качество выполнения задач, стоящих перед судном в целом. Особая роль здесь принадлежит системе контроля, предназначенной для сбора, преобразования, передачи и представления информации, необходимой для принятия решений о воздействии на контролируемый объект. Наличие в составе ЭУ десятков технических средств, имеющих самые разные принципы действия, обуславливает необходимость контроля сотен параметров. Совершенствование, повышение мощности установок, насыщение их автоматикой ведет к росту количества контрольно-измерительных приборов (КИП). Так, за последние 40 лет число КИП только по энергетическим установкам увеличилось примерно в 6 раз, количество приборов-сигнализаторов возросло более чем в 30 раз.
Анализ распределения блоков контроля ТС по видам сигнального раздражителя и способам представления информации показывает, что около 90 % приборов предусматривают визуальную форму восприятия информации. Восприятие информации слуховым, тактильным и температурным анализаторами оператора составляет около 10 % [ 1 ].
Традиционная система визуального контроля включает объект и зрительную систему оператора, взаимодействие которых происходит либо непосредственно, либо опосредованно, через оптический прибор.
Опытные операторы могут визуально достаточно надежно контролировать показания приборов, обнаруживать при внешнем осмотре многие поверхностные дефекты — трещины, окисные пленки, дефекты сварки, местные концентраторы напряжений в виде острых зазубрин, рисок и т. п. Однако результаты такого контроля в значительной степени субъективны, поскольку зависят от индивидуальных особенностей оператора (острота зрения, цветовосприятие, память) и его физического состояния (степень усталости, внимательности и т. п.).
Условно зрительную систему (ЗС) оператора можно разделить на две части: зрительный анализатор, который является своего рода датчиком видеоинформации, и центральную нервную систему. Зрительный анализатор имеет определенные ограничения по разрешающей способности в виде порогов световой, пространственной и временной чувствительности. Большое значение здесь имеют внешние условия (освещенность, угол обзора, расстояние до объекта, вибрация, состояние промежуточной среды и др.}, которые существенно влияют на разрешающую способность зрительного анализатора оператора.
Центральная нервная система выполняет роль управляющего звена ЗС, обеспечивая переработку информации, включая арифметические и логические операции, хранение и извлечение информации из памяти.
Анализ предельной информационно-пропускной способности (предельное число различимых градаций состояния объекта в единицу времени} центральной нервной системы показывает, что она составляет примерно 1О—АО бит/с, в то время как пропускная способность зрительного анализатора более чем в миллион раз выше — примерно 45 Мбит/с [2].
Данное несоответствие резко снижает возможности переработки информации ЗС оператора в целом. В этом случае центральная нервная система работает как звено с чистым запаздыванием. Именно этим объясняется то, что при визуальном контроле практически отсутствует косвенная оценка обобщенных показателей ТС, ограничено число контролируемых КИП и существенна погрешность считывания при оперативном контроле, крайне низка надежность динамического контроля при решении задач управления, ограничены возможности запоминания и объективной количественной оценки изображений элементов оборудования поданным внешнего осмотра, эндоскопии и микроскопии в диагностических задачах.
Узкий световой диапазон спектра электромагнитного излучения, воспринимаемый зрительным анализатором оператора непосредственно, не позволяет получить в полном объеме информацию о состоянии теплоэнергетических и электроэнергетических объектов, так как они активно излучают энергию в инфракрасном (ИК) диапазоне спектра.